81 research outputs found

    Hundreds Guide Millions: Adaptive Offline Reinforcement Learning with Expert Guidance

    Full text link
    Offline reinforcement learning (RL) optimizes the policy on a previously collected dataset without any interactions with the environment, yet usually suffers from the distributional shift problem. To mitigate this issue, a typical solution is to impose a policy constraint on a policy improvement objective. However, existing methods generally adopt a ``one-size-fits-all'' practice, i.e., keeping only a single improvement-constraint balance for all the samples in a mini-batch or even the entire offline dataset. In this work, we argue that different samples should be treated with different policy constraint intensities. Based on this idea, a novel plug-in approach named Guided Offline RL (GORL) is proposed. GORL employs a guiding network, along with only a few expert demonstrations, to adaptively determine the relative importance of the policy improvement and policy constraint for every sample. We theoretically prove that the guidance provided by our method is rational and near-optimal. Extensive experiments on various environments suggest that GORL can be easily installed on most offline RL algorithms with statistically significant performance improvements

    Boosting Offline Reinforcement Learning with Action Preference Query

    Full text link
    Training practical agents usually involve offline and online reinforcement learning (RL) to balance the policy's performance and interaction costs. In particular, online fine-tuning has become a commonly used method to correct the erroneous estimates of out-of-distribution data learned in the offline training phase. However, even limited online interactions can be inaccessible or catastrophic for high-stake scenarios like healthcare and autonomous driving. In this work, we introduce an interaction-free training scheme dubbed Offline-with-Action-Preferences (OAP). The main insight is that, compared to online fine-tuning, querying the preferences between pre-collected and learned actions can be equally or even more helpful to the erroneous estimate problem. By adaptively encouraging or suppressing policy constraint according to action preferences, OAP could distinguish overestimation from beneficial policy improvement and thus attains a more accurate evaluation of unseen data. Theoretically, we prove a lower bound of the behavior policy's performance improvement brought by OAP. Moreover, comprehensive experiments on the D4RL benchmark and state-of-the-art algorithms demonstrate that OAP yields higher (29% on average) scores, especially on challenging AntMaze tasks (98% higher).Comment: International Conference on Machine Learning 202

    Leveraging Reward Consistency for Interpretable Feature Discovery in Reinforcement Learning

    Full text link
    The black-box nature of deep reinforcement learning (RL) hinders them from real-world applications. Therefore, interpreting and explaining RL agents have been active research topics in recent years. Existing methods for post-hoc explanations usually adopt the action matching principle to enable an easy understanding of vision-based RL agents. In this paper, it is argued that the commonly used action matching principle is more like an explanation of deep neural networks (DNNs) than the interpretation of RL agents. It may lead to irrelevant or misplaced feature attribution when different DNNs' outputs lead to the same rewards or different rewards result from the same outputs. Therefore, we propose to consider rewards, the essential objective of RL agents, as the essential objective of interpreting RL agents as well. To ensure reward consistency during interpretable feature discovery, a novel framework (RL interpreting RL, denoted as RL-in-RL) is proposed to solve the gradient disconnection from actions to rewards. We verify and evaluate our method on the Atari 2600 games as well as Duckietown, a challenging self-driving car simulator environment. The results show that our method manages to keep reward (or return) consistency and achieves high-quality feature attribution. Further, a series of analytical experiments validate our assumption of the action matching principle's limitations

    Sporthesia: Augmenting Sports Videos Using Natural Language

    Full text link
    Augmented sports videos, which combine visualizations and video effects to present data in actual scenes, can communicate insights engagingly and thus have been increasingly popular for sports enthusiasts around the world. Yet, creating augmented sports videos remains a challenging task, requiring considerable time and video editing skills. On the other hand, sports insights are often communicated using natural language, such as in commentaries, oral presentations, and articles, but usually lack visual cues. Thus, this work aims to facilitate the creation of augmented sports videos by enabling analysts to directly create visualizations embedded in videos using insights expressed in natural language. To achieve this goal, we propose a three-step approach - 1) detecting visualizable entities in the text, 2) mapping these entities into visualizations, and 3) scheduling these visualizations to play with the video - and analyzed 155 sports video clips and the accompanying commentaries for accomplishing these steps. Informed by our analysis, we have designed and implemented Sporthesia, a proof-of-concept system that takes racket-based sports videos and textual commentaries as the input and outputs augmented videos. We demonstrate Sporthesia's applicability in two exemplar scenarios, i.e., authoring augmented sports videos using text and augmenting historical sports videos based on auditory comments. A technical evaluation shows that Sporthesia achieves high accuracy (F1-score of 0.9) in detecting visualizable entities in the text. An expert evaluation with eight sports analysts suggests high utility, effectiveness, and satisfaction with our language-driven authoring method and provides insights for future improvement and opportunities.Comment: 10 pages, IEEE VIS conferenc

    iBall: Augmenting Basketball Videos with Gaze-moderated Embedded Visualizations

    Full text link
    We present iBall, a basketball video-watching system that leverages gaze-moderated embedded visualizations to facilitate game understanding and engagement of casual fans. Video broadcasting and online video platforms make watching basketball games increasingly accessible. Yet, for new or casual fans, watching basketball videos is often confusing due to their limited basketball knowledge and the lack of accessible, on-demand information to resolve their confusion. To assist casual fans in watching basketball videos, we compared the game-watching behaviors of casual and die-hard fans in a formative study and developed iBall based on the fndings. iBall embeds visualizations into basketball videos using a computer vision pipeline, and automatically adapts the visualizations based on the game context and users' gaze, helping casual fans appreciate basketball games without being overwhelmed. We confrmed the usefulness, usability, and engagement of iBall in a study with 16 casual fans, and further collected feedback from 8 die-hard fans.Comment: ACM CHI2

    NeighViz: Towards Better Understanding of Neighborhood Effects on Social Groups with Spatial Data

    Full text link
    Understanding how local environments influence individual behaviors, such as voting patterns or suicidal tendencies, is crucial in social science to reveal and reduce spatial disparities and promote social well-being. With the increasing availability of large-scale individual-level census data, new analytical opportunities arise for social scientists to explore human behaviors (e.g., political engagement) among social groups at a fine-grained level. However, traditional statistical methods mostly focus on global, aggregated spatial correlations, which are limited to understanding and comparing the impact of local environments (e.g., neighborhoods) on human behaviors among social groups. In this study, we introduce a new analytical framework for analyzing multi-variate neighborhood effects between social groups. We then propose NeighVi, an interactive visual analytics system that helps social scientists explore, understand, and verify the influence of neighborhood effects on human behaviors. Finally, we use a case study to illustrate the effectiveness and usability of our system.Comment: Symposium on Visualization in Data Science (VDS) at IEEE VIS 202

    Train Once, Get a Family: State-Adaptive Balances for Offline-to-Online Reinforcement Learning

    Full text link
    Offline-to-online reinforcement learning (RL) is a training paradigm that combines pre-training on a pre-collected dataset with fine-tuning in an online environment. However, the incorporation of online fine-tuning can intensify the well-known distributional shift problem. Existing solutions tackle this problem by imposing a policy constraint on the policy improvement objective in both offline and online learning. They typically advocate a single balance between policy improvement and constraints across diverse data collections. This one-size-fits-all manner may not optimally leverage each collected sample due to the significant variation in data quality across different states. To this end, we introduce Family Offline-to-Online RL (FamO2O), a simple yet effective framework that empowers existing algorithms to determine state-adaptive improvement-constraint balances. FamO2O utilizes a universal model to train a family of policies with different improvement/constraint intensities, and a balance model to select a suitable policy for each state. Theoretically, we prove that state-adaptive balances are necessary for achieving a higher policy performance upper bound. Empirically, extensive experiments show that FamO2O offers a statistically significant improvement over various existing methods, achieving state-of-the-art performance on the D4RL benchmark. Codes are available at https://github.com/LeapLabTHU/FamO2O.Comment: NeurIPS 2023 spotlight. 24 pages, 13 figure

    Avalon's Game of Thoughts: Battle Against Deception through Recursive Contemplation

    Full text link
    Recent breakthroughs in large language models (LLMs) have brought remarkable success in the field of LLM-as-Agent. Nevertheless, a prevalent assumption is that the information processed by LLMs is consistently honest, neglecting the pervasive deceptive or misleading information in human society and AI-generated content. This oversight makes LLMs susceptible to malicious manipulations, potentially resulting in detrimental outcomes. This study utilizes the intricate Avalon game as a testbed to explore LLMs' potential in deceptive environments. Avalon, full of misinformation and requiring sophisticated logic, manifests as a "Game-of-Thoughts". Inspired by the efficacy of humans' recursive thinking and perspective-taking in the Avalon game, we introduce a novel framework, Recursive Contemplation (ReCon), to enhance LLMs' ability to identify and counteract deceptive information. ReCon combines formulation and refinement contemplation processes; formulation contemplation produces initial thoughts and speech, while refinement contemplation further polishes them. Additionally, we incorporate first-order and second-order perspective transitions into these processes respectively. Specifically, the first-order allows an LLM agent to infer others' mental states, and the second-order involves understanding how others perceive the agent's mental state. After integrating ReCon with different LLMs, extensive experiment results from the Avalon game indicate its efficacy in aiding LLMs to discern and maneuver around deceptive information without extra fine-tuning and data. Finally, we offer a possible explanation for the efficacy of ReCon and explore the current limitations of LLMs in terms of safety, reasoning, speaking style, and format, potentially furnishing insights for subsequent research.Comment: 40 page

    N6-methyladenosine RNA modification promotes viral genomic RNA stability and infection

    Get PDF
    Molecular manipulation of susceptibility (S) genes that are antipodes to resistance (R) genes has been adopted as an alternative strategy for controlling crop diseases. Here, we show the S gene encoding Triticum aestivum m(6)A methyltransferase B (TaMTB) is identified by a genome-wide association study and subsequently shown to be a positive regulator for wheat yellow mosaic virus (WYMV) infection. TaMTB is localized in the nucleus, is translocated into the cytoplasmic aggregates by binding to WYMV NIb to upregulate the m(6)A level of WYMV RNA1 and stabilize the viral RNA, thus promoting viral infection. A natural mutant allele TaMTB-SNP176C is found to confer an enhanced susceptibility to WYMV infection through genetic variation analysis on 243 wheat varieties. Our discovery highlights this allele can be a useful target for the molecular wheat breeding in the future

    A chromosome conformation capture ordered sequence of the barley genome

    Get PDF
    201
    • …
    corecore